Mechanisms of allergic diseases

(Supported by an educational grant from Merck & Co., Inc.)

Series editors: Joshua A. Boyce, MD, Fred Finkelman, MD, William T. Shearer, MD, PhD, and Donata Vercelli, MD

The leukotriene E₄ puzzle: Finding the missing pieces and revealing the pathobiologic implications

K. Frank Austen, MD, Akiko Maekawa, PhD, Yoshihide Kanaoka, MD, PhD, and Joshua A. Boyce, MD Boston, Mass

INFORMATION FOR CATEGORY 1 CME CREDIT

Credit can now be obtained, free for a limited time, by reading the review articles in this issue. Please note the following instructions.

Method of Physician Participation in Learning Process: The core material for these activities can be read in this issue of the Journal or online at the JACI Web site: www.jacionline.org. The accompanying tests may only be submitted online at www.jacionline.org. Fax or other copies will not be accepted.

Date of Original Release: September 2009. Credit may be obtained for these courses until August 31, 2011.

Copyright Statement: Copyright © 2009-2011. All rights reserved.

Overall Purpose/Goal: To provide excellent reviews on key aspects of allergic disease to those who research, treat, or manage allergic disease.

Target Audience: Physicians and researchers within the field of allergic disease.

Accreditation/Provider Statements and Credit Designation: The American Academy of Allergy, Asthma & Immunology (AAAAI) is accredited by the Accreditation Council for Continuing Medical Education (ACCME) to provide continuing medical education for physicians. The

The intracellular parent of the cysteinyl leukotrienes (cysLTs), leukotriene (LT) C_4 , is formed by conjugation of LTA₄ and reduced glutathione by LTC₄ synthase in mast cells, eosinophils, basophils, and macrophages. After extracellular export, LTC₄ is converted to LTD₄ and LTE₄ through sequential enzymatic removal of glutamic acid and then glycine. Only LTE₄ is sufficiently stable to be prominent in biologic fluids, such as urine or bronchoalveolar lavage fluid, of asthmatic individuals and at sites of inflammation in animal models. LTE₄ has received little attention because it binds poorly to the classical type 1 and 2 cysLT receptors and is much less active on normal airways than LTC₄ or LTD₄. However, early studies indicated that LTE₄ caused skin swelling in human subjects as potently as LTC₄ and LTD₄, that airways of asthmatic subjects AAAAI designates these educational activities for a maximum of 1 *AMA PRA Category 1 Credit*TM. Physicians should only claim credit commensurate with the extent of their participation in the activity.

List of Design Committee Members: *Authors:* K. Frank Austen, MD, Akiko Maekawa, PhD, Yoshihide Kanaoka, MD, PhD, and Joshua A. Boyce, MD

Activity Objectives

1. To better understand the biologic activities of leukotriene (LT) E₄.

2. To understand the interactions of the cysteinyl leukotrienes (cysLTs) with their receptors.

3. To appreciate the key biochemical aspects of the LT pathway.

Recognition of Commercial Support: This CME activity is supported by an educational grant from Merck & Co., Inc.

Disclosure of Significant Relationships with Relevant Commercial

Companies/Organizations: J. A. Boyce has received speaking honoraria from Merck. The rest of the authors have declared that they have no conflict of interest.

(particularly those that were aspirin sensitive) were selectively hyperresponsive to LTE_4 , and that a potential distinct LTE_4 receptor was present in guinea pig trachea. Recent studies have begun to uncover receptors selective for LTE_4 : $P2Y_{12}$, an adenosine diphosphate receptor, and $CysLT_ER$, which was observed functionally in the skin of mice lacking the type 1 and 2 cysLT receptors. These findings prompt a renewed focus on LTE_4 receptors as therapeutic targets that are not currently addressed by available receptor antagonists. (J Allergy Clin Immunol 2009;124:406-14.)

Key words: Leukotriene E_4 , *G protein–coupled receptor, bronchial asthma, inflammation, knockout mouse*

Of the 3 *cysteinyl leukotrienes* (cysLTs; leukotriene [LT] C_4 , LTD₄, and LTE₄), only LTE₄ is sufficiently stable so as to be detectable in extracellular fluids. Although widely used as a biomarker of cysLT pathway activity in clinical studies, LTE₄ has received little attention in recent literature as a mediator of inflammation because of its poor activity at the classical cysLT receptors (type 1 *cysteinyl leukotriene receptor* [CysLT₁R] and type 2 cysteinyl leukotriene receptor [CysLT₂R]). However, several earlier studies clearly demonstrated that LTE₄ had biologic activity that differed from that of its precursors, predicting (correctly in retrospect) the existence of specific LTE₄-reactive receptors. This review will highlight LTE₄ from a historical

From the Department of Medicine, Harvard Medical School, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital.

Received for publication April 10, 2009; revised May 6, 2009; accepted for publication May 6, 2009.

Available online August 3, 2009.

Reprint requests: K. Frank Austen, MD, Department of Medicine, Harvard Medical School, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, One Jimmy Fund Way, Boston, MA 02115. E-mail: fausten@rics.bwh. harvard.edu.

^{0091-6749/\$36.00}

^{© 2009} American Academy of Allergy, Asthma & Immunology

doi:10.1016/j.jaci.2009.05.046

Terms in boldface and italics are defined in the glossary on page 407.

Abbreviations used				
cysLT:	Cysteinyl leukotriene			
CysLT ₁ R:	Type 1 cysteinyl leukotriene receptor			
CysLT ₂ R:	Type 2 cysteinyl leukotriene receptor			
ERK:	Extracellular signal-regulated kinase			
GPCR:	G protein-coupled receptor			
LT:	Leukotriene			
LTC ₄ S:	Leukotriene C ₄ synthase			
MIP-1β:	Macrophage inflammatory protein 1B			
PG:	Prostaglandin			
PPAR-γ:	Peroxisome proliferator-activated receptor γ			
SRS-A:	Slow-reacting substance of anaphylaxis			
WT:	Wild-type			

perspective, from its discovery to the identification of its receptors and mechanisms of action.

DISCOVERY OF LTE₄

The slow-reacting substance of anaphylaxis (SRS-A), so named by Brocklehurst,¹ was identified as a substance generated by *in vitro* antigen/allergen challenge of perfused lungs of

GLOSSARY

ARACHIDONIC ACID: Arachidonic acid is the precursor for both LTs and prostaglandins and is found on the nuclear membrane. Together, LTs and prostaglandins are called eicosanoids.

ASPIRIN-EXACERBATED RESPIRATORY DISEASE (AERD): AERD consists of a clinical constellation of nasal polyposis with eosinophilic sinusitis, asthma, and idiosyncratic sensitivity to nonsteroidal antiinflammatory agents that inhibit COX-1. Treatment of patients with AERD includes LT inhibitors.

COX-2: COX-2 is induced by LPS, IL-1, and IL-2 to produce prostaglandin intermediates from arachidonic acid.

CYSTEINYL LEUKOTRIENE (cysLT): LTs, so named because of their generation from "leuko" cytes and conserved 3-double-bond "trienes," are generated from arachidonic acid by 5-lipoxygenase/5-lipoxygenase-activating protein. Conversion of LTA₄ to LTC₄ by means of addition of glutathione is the first step to generating cysLTs. LTA₄ hydrolase converts LTA₄ to LTB₄. The major sources of LTC₄S (and thus cysLTs) are eosinophils, basophils, and macrophages. Mast cells make both LTC₄S and, along with neutrophils and macrophages, LTA₄ hydrolase.

CYSTEINYL LEUKOTRIENE RECEPTOR (CysLTR): Both cysLT receptors and LTB₄ receptors are 7-transmembrane GPCRs. CysLT receptors can be upregulated by IL-4. LTB₄ uses 2 receptors, BLT1 and BLT2, which are expressed on most tissues and upregulated by IFN- γ and promote neutrophil chemotaxis when activated by LTB₄.

DYNAMIC COMPLIANCE: Airway compliance is a measure of volume change per unit of pressure. Lungs from patients with longstanding asthma have been reported to show decreased compliance, perhaps because of airway remodeling and associated fibrosis.

INDOMETHACIN: Indomethacin inhibits COX-1 and can trigger AERD.

IL-6: IL-6 primes for T_H2 effector cells, inhibits the suppressive functions of CD4⁺CD25⁺ regulatory T cells, and protects mast cells from apoptosis.

IL-10: Generally associated with dampening immune responses, IL-10 decreases mast cell functions, such as IgE-mediated activation and anaphylaxis, in murine models.

IL-13: IL-13 and IL-6 can be produced by mast cells in response to activating signals, such as IL-33.

actively sensitized guinea pigs or human lung fragments of allergic patients requiring resection. Its potent constrictor activity on guinea pig or human bronchioles in the presence of an antihistamine provided compelling evidence for its potential role in asthma. The initial analyses into the physical characteristics and composition of SRS-A from the rat suggested possible sulfur content.² This led to the identification by Murphy et al³ of LTC₄, the first component of SRS-A, by loading a mastocytoma cell line with [³⁵S]cysteine and identifying the radiolabeled component released in response to activation with calcium ionophore. LTC₄ was composed of a metabolite of arachidonic acid (eicosatetraenoic acid) with 3 conjugated double bonds and a peptide adduct through a sulfur bridge. The exact stereochemistry of the lipid and the amino acid sequence of the S-linked peptide of LTC_4 were obtained by comparing purified natural SRS-A with candidate synthetic cysLTs prepared by E. J. Corey.⁴ These synthetic cysLTs showed bioactivity consistent with the functional definition of SRS-A offered by Brocklehurst,¹ who noted that a range of activities could contract the guinea pig ileum in the presence of an antihistamine.

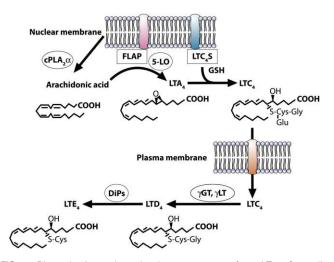
Because we had anticipated that the activity of SRS-A could be attributed to a single product, we were surprised to find that partially purified SRS-A from the peritoneal cavity of rats

<code>"LUKASTS": Montelukast, pranlukast, and zafirlukast all block the CysLT_1R, whereas biosynthetic pathway inhibitors, such as zileuton, block the production of both cysLTs and LTB₄.</code>

MACROPHAGE INFLAMMATORY PROTEIN 1 β (MIP-1 β): MIP-1 is involved in the chemotaxis and activation of monocytes. CysLTs can induce MIP-1 β and MIP-1 α production from monocytes through the CysLT₁R.

PERMEABILITY-ENHANCING ACTIVITY: Activated vascular endothelium allows leakage of dyes (eg, Evans blue and fluorescein isothiocyanate-albumin) into the extravascular space, making tissues appear colored (blue) or fluorescent (fluorescein isothiocyanate).

PERTUSSIS TOXIN: Pertussis toxin inhibits the function of GPCRs through adenosine diphosphate ribosylation of $G\alpha$.


PULMONARY RESISTANCE: Mechanical factors that limit alveolar access to air. Pulmonary resistance is calculated by using Ohm's and Poiseuille's laws, which factor in the pressure difference at the mouth and alveoli, the rate of airflow, viscosity, and the length and radius of the airways.

PROSTAGLANDIN D₂ (PGD₂): A mast cell eicosanoid made in large quantities after IgE-mediated mast cell activation. PGD₂ levels are increased after allergen challenge, and it functions as a bronchconstrictor and vasodilator and is associated with eosinophil influx.

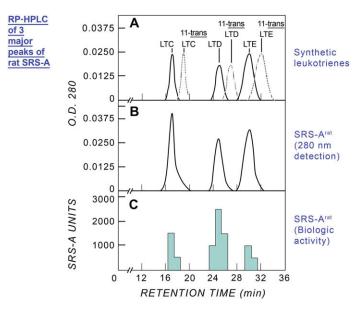
PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR γ (PPAR- γ): Transcription factors in the nuclear hormone receptor superfamily that binds retinoic acid. PPAR- γ 1 and PPAR- γ 2 are expressed in adipocytes and decrease proinflammatory cytokine production from macrophages, B and T cells, eosinophils, dendritic cells, and airway epithelium.

RESPIRATORY BURST: The neutrophil oxidative burst generates superoxide anions and reactive oxygen intermediates important for microbial killing through the reduced nicotinamide adenine dinucleotide phosphate oxidase complex. Mutations in this complex (gp91, gp67^{phox}, gp22, and gp47^{phox}) cause chronic granulomatous disease and recurrent infections with organisms such as *Staphylococcus aureus*, *Aspergillus* species, *Serratia* species, and *Burkholderia cepacia*.

The Editors wish to acknowledge Seema Aceves, MD, PhD, for preparing this glossary.

FIG 1. Biosynthesis and molecular structures of cysLTs. Cytosolic phospholipase $A_{2\alpha}$ (*cPLA₂* $_{\alpha}$) catalyzes the liberation of arachidonic acid from nuclear membranes. 5-Lipoxygenase (*5-LO*) translocates to the nuclear envelope, requiring the integral membrane protein 5-LO-activating protein (*FLAP*) to convert arachidonic acid to the precursor LTA₄. LTA₄ is further conjugated to reduced glutathione (*GSH*) by LTC₄S, forming LTC₄, the first committed molecule of the cysLTs. After energy-dependent export, LTC₄ is converted by the extracellular enzymes γ -glutamyl transpeptidase (γ *GT*) or γ -glutamyl leukotrienase (γ *LT*) to LTD₄ and to LTE₄ by dipeptidases (*DiPs*).

undergoing IgGa-dependent anaphylaxis was comprised of 3 products, all with 3 conjugated double bonds and each having contractile activity for the guinea pig ileum. By comparison with active and inactive standards with different peptide adducts, we recognized the 3 components of authentic SRS-A to elute with the retention times of the previously defined $LTC_4^{4,5}$ and 2 additional theoretic structures, LTD₄ and LTE₄.⁶ These 2 additional structures differed from LTC₄ in that the former possessed the sulfurlinked glutathione tripeptide adduct composed of glutamic acid, glycine, and cysteine, whereas LTD₄ lacked the glutamic acid residue and LTE₄ lacked both the glutamic acid and glycine residues (Fig 1). Because LTC₄ is the only intracellular cysLT generated by LTC₄ synthase (LTC₄S),⁷ it seemed likely that LTD₄ was formed extracellularly from LTC₄ by means of deletion of glutamic acid (by a γ -glutamyl transpeptidase or γ -glutamyl leukotrienase) after the export of the former compound to the extracellular space. Further removal of glycine from the remaining dipeptide adduct of LTD₄ by dipeptidases accounted for LTE₄ with a remaining cysteine adduct.^{6,8} That LTC₄ underwent enzymatic modification in the extracellular space accounted for the fact that it was the only component of SRS-A to be detected in single-cell systems, whereas all 3 components were detected in biologic fluids. These early studies not only showed natural SRS-A to be composed of 3 cysLTs but also demonstrated that each cysLT had contractile activity for ileal smooth muscle in vivo (Fig 2) and permeability-enhancing activity by means of intradermal injection into the guinea pig prepared with Evans blue dye.⁶


Members of the pharmaceutical industry then used contractile assays to characterize the putative "receptors" for cysLTs and to identify potential antagonists. This approach permitted the development of the prototypes of the orally available CysLT₁R-selective antagonists (*"lukasts"*) more than a decade before any receptor was defined in molecular terms. Human CysLT₁R and CysLT₂R were cloned by Evans and colleagues.^{9,10} CysLT₁R exhibited a marked preference for binding of LTD₄ over LTC₄ and was the only receptor that was competitively blocked by the lukasts. CysLT₂R had equal affinity for LTD₄ and LTC₄ and bound LTD₄ at 10-fold lower affinity than did CysLT₁R. It was surprising that LTE₄ did not register as an appreciable binding ligand for these "classical" receptors expressed individually in cloned cells. The poor affinity of LTE₄ for these cloned receptors prompted some to suggest that LTE₄ was a relatively impotent extracellular metabolite and perhaps discouraged others from seeking a third receptor. In contrast, we believed that the LTE₄ agonist activity that had been demonstrated in pharmacologic studies in guinea pigs and human subjects was impressive and that the greater stability of LTE₄ relative to the other cysLTs might favor a distinct pathobiologic role. The sections that follow will consider some of the early findings for LTE_4 , favoring the existence of a distinct receptor and revealing its relative biologic stability. We will also consider the noteworthy potency of LTE₄ as a contractile agonist in guinea pig airways and in the human microvasculature, as well as a proinflammatory function based on studies using aerosolization challenge in human subjects with asthma and in allergen-sensitized mice. These studies have been key to the recognition of 2 functional receptors activated by LTE₄ by 2 different laboratories with different experimental approaches.

EARLY PHARMACOLOGY OF LTE₄ IN ANIMALS

The potency of LTE₄ for contraction of guinea pig tracheal spirals *in vitro* was 10-fold greater than that of either LTC₄ or LTD₄, whereas for guinea pig parenchymal strips, the potency of LTD₄ was 6-fold that of LTE₄ and 20-fold that of LTC₄. Furthermore, the concentration effect for LTD₄ and LTE₄ on parenchymal strips observed by Drazen et al¹² was biphasic, with the initial low concentration effect (studied only for LTD₄) being competitively antagonized by FPL55712. In contrast, LTC₄ was the least potent ligand and produced only a linear response.^{11,12} When these ligands were administered intravenously to the intact anesthetized or unanesthetized guinea pig, LTD₄ and LTC₄ elicited a small increase in *pulmonary resistance* compared with the magnitude of the decrease in *dynamic compliance*, whereas LTE₄ decreased compliance together with a robust increase in *resistance*, indicating both peripheral and central airway effects.^{12,13}

Another distinctive effect of LTE₄ was that it enhanced the contractile responses of the guinea pig tracheal smooth muscle to histamine, a property not shared with LTC₄ or LTD₄. The latter effect of LTE₄ could be prevented by treatment of the tracheal tissue with *indomethacin*, indicating a key role for a COX product.¹⁴ Together, these *in vitro* and *in vivo* functional findings suggested the presence of 3 receptors for cysLTs: a high-affinity receptor for LTD₄, a lower-affinity receptor for LTC₄, and a separate receptor for LTE₄, with the latter potentially capable of eliciting the secondary production of a prostanoid (Table I).¹²

The observed ratio of potency for the 3 cysLTs in different tissues could reflect not only the profile of receptor expression in the target tissue but also the rate of conversion of 1 cysLT to another of greater or lesser activity. This is readily demonstrated when LTC_4 and LTD_4 are separately applied to the guinea pig ileum at concentrations sufficient to result in their maximum isotonic responses. Tritiated LTC_4 has a 60-second latent period before initiating a linear contractile response to 80% of maximum over 2 minutes, which is followed by a further contraction associated with slow metabolism to the more potent tritiated LTD_4 .

FIG 2. Resolution by means of RP-HPLC of 3 major peaks of SRS-A produced in the peritoneal cavities of rats. **A**, retention times of synthetic cysLTs. **B**, Retention times of the resolved natural components of SRS-A. **C**, Arbitrary units of biologic activity of these natural components for contraction of the guinea pig ileum. Reproduced from Lewis et al⁶ with permission from Elsevier, Inc.

TABLE I. Effects of various LTs on airways

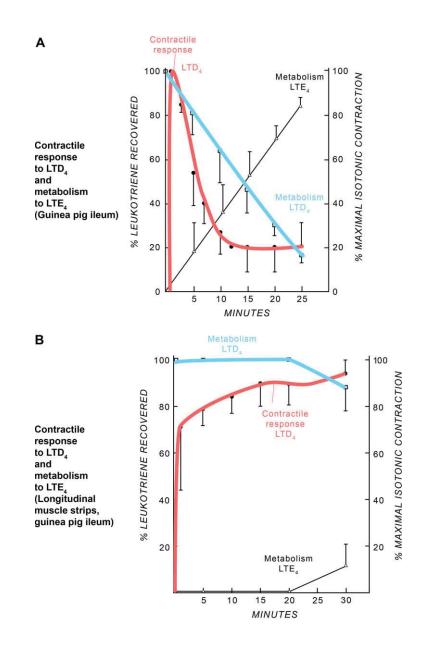
	LT		
	С	D	E
In vitro*			
Parenchymal strip	1/300	1/6000	1/1000
Tracheal spiral	1/30	1/30	1/300
In vivo†			
	3+	4+	3+
C _{dyn} R _L	1+	1 +	3+

Reproduced from Drazen et al¹² with kind permission of Springer Science and Business Media.

C_{dyn}, Dynamic compliance; R_L, lung resistance.

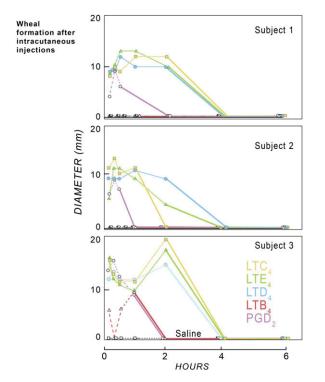
**In vitro* activity is recorded as the ratio of the molar concentration of LTs required to achieve a half-maximal response to the concentration of histamine required to achieve an equivalent response.

 $\pm ln$ vivo activity is recorded as the response to infusion of 3 µg/kg LT (*l*+, minimal response; *4*+, maximal response).


There is negligible conversion of tritiated LTC₄ to tritiated LTD₄/ LTE₄ during the linear phase. Furthermore, the inclusion of serine borate to block bioconversion of LTC₄ to LTD₄ by membrane γ -glutamyl transpeptidase does not change the response of the tissue to LTC₄, thus confirming that this response is mediated by a specific LTC₄ receptor.¹⁵ In contrast, tritiated LTD₄ initiated an immediate linear contraction that reached maximum at 1 minute and then decreased sharply with linear conversion to tritiated LTE₄, which has only one quarter the potency of LTD₄ in this assay. When the mucosa containing the dipeptidase activity had been removed from the ileal muscle, the linear contractile response to tritiated LTD₄ was maintained, reflecting the loss of metabolism to tritiated LTE₄ by means of removal of the glycine. These findings nicely reflect the exquisite receptor specificity of the cysLT system that is conferred by modifications of the peptide adduct (Fig 3).

EARLY STUDIES OF LTE₄ METABOLISM

The products of the granulocyte *respiratory burst*, which are abundant with inflammation, can alter the stability of each cysLT in vitro and in vivo. Phorbol 12-myristate 13-acetate-activated human neutrophils converted each cysLT to their subclass-specific S-diastereoisomeric sulfoxides, which retained their ability to be detected by cysLT-specific antibodies but lost greater than 95% of function. Each sulfoxide was further processed to identical diastereoisomers of 6-trans LTB₄, which were nonfunctional and no longer immunoreactive with the original antibodies. This neutrophil-mediated inactivation involved interaction of released myeloperoxidase, newly generated H2O2, and extracellular chloride ion to form hypochlorous acid. Dose-dependent attack on the sulfur bridge during hypochlorous acid formation showed that LTE4 was substantially more resistant than the other cysLTs.16,17 Systemic metabolism of the cysLTs begins after export of intracellular LTC₄ and its rapid extracellular physiologic sequential conversion through LTD₄ to LTE₄. Studies using intravascular administration of labeled LTE4 or LTC4 to human subjects indicate that approximately 5% is recovered in the urine and is composed of LTE4 and N-acetyl LTE4. At the level of tissue peroxisomes, omega oxidation at the C-terminus yields 20-COOH-LTE₄ and formation of the 20-CoA ester, which allows for sequential β oxidation with shortening of the carbon chain to 18-COOH-dinor-LTE₄ and beyond.¹⁸⁻²⁰

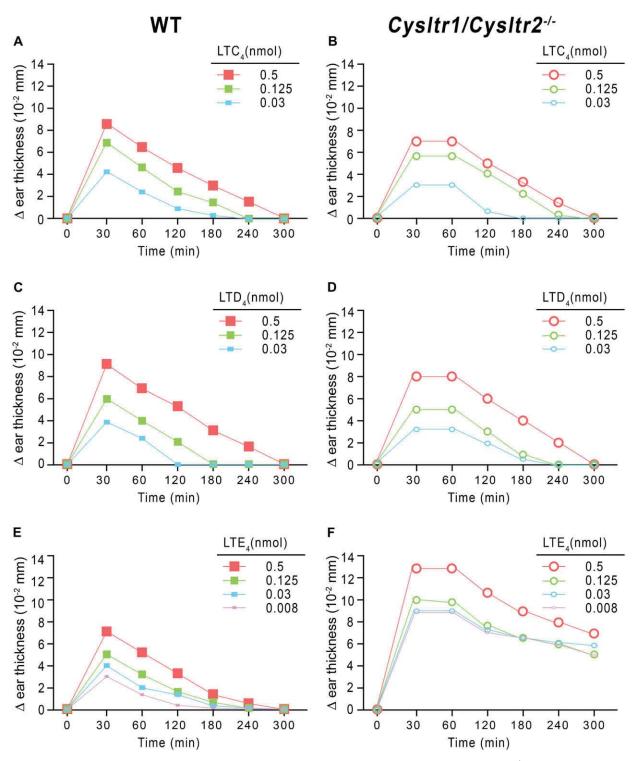

EARLY PHARMACOLOGY OF LTE₄ IN HUMAN SUBJECTS

Although the early pharmacology of the 3 sequentially generated cysLTs identified LTE₄ as the most stable in physiologic and pathobiologic models, clinical attention shifted to LTD₄ and LTC₄, which on inhalation were up to 1000 times as potent as histamine.^{21,22} LTE₄ was only 39 times as potent as histamine in reducing maximum expiratory flow at 30% of vital capacity

FIG 3. LTD₄-elicted contraction of guinea pig ileum and associated metabolism to LTE₄. **A**, Time course of contractile response to 3.6 ng of tritiated LTD₄ from guinea ileum expressed as a percentage of maximal response (*solid circles*) and of metabolism of tritiated LTD₄ (*open squares*) to tritiated LTE₄ (*open triangles*) expressed as a percentage of total labeled LTs recovered. **B**, Time course of contractile response to 3.6 ng of tritiated LTD₄ from longitudinal muscle strips of guinea pig ileum expressed as a percentage of maximal response (*solid circles*) and of metabolism of tritiated LTD₄ (*open squares*) to tritiated LTE₄ (*open triangles*) in a from longitudinal muscle strips of guinea pig ileum expressed as a percentage of maximal response (*solid circles*) and of metabolism of tritiated LTD₄ (*open squares*) to tritiated LTE₄ (*open triangles*) expressed as a percentage of total LTs recovered. Reproduced from Krilis et al¹⁵ with permission from the American Society for Clinical Investigation.

in healthy human subjects.²¹⁻²³ Although each cysLT was a potent bronchoconstrictor in patients with bronchial asthma, there was little difference between asthmatic and healthy control subjects in sensitivity to cysLTs, which is in contrast to the hyperresponsiveness to histamine or methacholine that is characteristic of asthma.²⁴ An exception to that rule is in *aspirin-exacerbated respiratory disease*, an asthma variant associated with marked overproduction of the cysLTs. In these subjects Christie et al²⁵ showed selective hyperresponsiveness to LTE₄, but not to LTC₄, relative to that seen in aspirin-tolerant asthmatic subjects. Because we had recognized that LTE_4 induced permeability in guinea pig skin over the same dose range (5.0-50 ng) as for LTC_4 and LTD_4 ,⁶ we compared their action at 1.0 nmol per site by means of intradermal injection in 3 human volunteers. Each cysLT elicited a wheal-and-flare response by 10 minutes, which peaked at 1 to 2 hours with a 10- to 20-mm wheal and a 20- to 25-mm flare. The wheal resolved by 4 hours (Fig 4), whereas the flare was still evident at 6 hours.²⁶ The 3 cysLTs produced equiactive responses in each subject. Biopsy specimens at 2 hours showed dermal edema, marked and uniform dilation of the microvasculature,

FIG 4. Wheal formation occurring with intracutaneous injections of various eicosanoids into 3 human subjects. The agonists were LTC_4 (*solid squares*; 1.0 nmol per site), LTD_4 (*solid circles*; 1.0 nmol per site), LTE_4 (*solid triangles*; 1.0 nmol per site), LTB_4 (*solid circles*; 1.6 nmol per site), PGD_2 (*open circles*; 3.0 nmol per site), and saline (*open squares*). The greatest diameter of the wheal in millimeters is depicted versus time from 10 minutes to 6 hours. Reproduced from Soter et al²⁶ with permission from Nature Publishing Group.


and deep venules with activation of endothelial cells and some dilation of arterioles. That LTE_4 was apparently as potent a permeability factor as LTC_4 and LTD_4 in 2 species clearly indicated that it was not a disposal product. The advent of molecular biology and the development of gene-deleted mice later permitted the use of murine microvasculature to seek a functional receptor for LTE_4 .

FUNCTIONAL AND PHARMACOLOGIC CHARACTERIZATION OF CysLT_ER, A CUTANEOUS RECEPTOR PREFERENTIAL FOR LTE₄

In addition to addressing the pharmacology of the cysLTs during the 1980s, we began to characterize LTC₄S, the integral protein of the outer nuclear membrane responsible for biosynthesis of LTC₄, by means of conjugation of glutathione to LTA₄.⁷ After expression cloning of human LTC₄S and then homology cloning of murine LTC_4S ,^{27,28} we turned to targeted disruption of murine LTC₄S to explore for phenotypic characteristics that might depend on the functions of the cysLTs.²⁹ In a model of passive cutaneous anaphylaxis, there was more than 50% reduction in ear swelling (indicative of vascular leak) in LTC₄S-deficient mice ($Ltc4s^{-/-}$) compared with wild-type (WT) mice after local sensitization of mast cells with specific IgE and systemic challenge with hapten-specific antigen. Thus the permeability-enhancing function of mast cellderived cysLTs was at least as important as the preformed amines in this model. To analyze the contributions from individual cysLT receptors, we next generated strains deficient in CysLT₁R $(Cyslt1r^{-/-})$ and $CysLT_2R$ $(Cyslt2r^{-/-})$, respectively,^{30,31} based on the prior cloning of these 7-transmembrane, human G protein–coupled receptors (GPCRs).^{9,10} In response to an intraperitoneal injection of zymosan, a yeast cell-wall material that elicits cysLT generation from macrophages, both the $Ltc4s^{-/-}$ and $Cyslt1r^{-/-}$, but not the $Cyslt2r^{-/-}$, strains showed approximately 50% reductions in vascular leak, implying a key role for cysLTs acting at CysLT₁R for this innate immune response.

The responsiveness of the murine vasculature to the cysLTs suggested that the existence of a distinct LTE₄-reactive receptor could be proved by studying cysLT-dependent swelling responses in mice deficient in both receptors. This strain $(Cyslt1r/Cyslt2r^{-/-})$ was created by intercrossing the $Cyslt1r^{-1/2}$ and $Cyslt2r^{-1/2}$ strains.³² The resulting double-receptor deficiency of the *Cyslt1r/* $Cyslt2r^{-/-}$ strain was confirmed by the absence of both receptor transcripts. We then examined the dose-dependent ear edema elicited by each cysLT in the respective $Cyslt1r^{-/-}$, $Cyslt2r^{-/-}$, and $Cyslt1r/Cyslt2r^{-/-}$ strains.³² The dose-dependent ear edema elicited by means of injection of LTD₄ and LTC₄ in the Cyslt1r/Cy $slt2r^{-/-}$ strain was equivalent to that in the WT control animals, indicating the presence of a previously unrecognized receptor. The Cyslt1r/Cyslt2r^{-/-} mice were especially sensitive to LTE₄, exhibiting the same extent of ear swelling in response to an LTE₄ dose of 0.008 nmol as the response of the WT mice to 0.5 nmol (a 64fold increase in sensitivity to LTE₄). Histologic analysis of biopsy specimens at 30 and 240 minutes showed an exaggerated magnitude and duration of ear edema without cellular infiltration in response to LTE₄ in the *Cyslt1r/Cyslt2r^{-/-}* strain. The LTE₄-mediated vascular leak in the *Cyslt1r/Cyslt2r^{-/-}* strain was markedly inhibited by pretreatment of the mice with pertussis toxin or a Rho kinase inhibitor, supporting that the mechanism involved a GPCR linked to G α i proteins and Rho kinase.³² Additionally, the response to LTE₄ was blocked by approximately 30% by means of treatment of the mice with indomethacin, which is reminiscent of the indomethacin sensitivity of the LTE₄ response of guinea pig tracheal rings.¹⁴ The particular sensitivity of this novel receptor to LTE₄ prompts the designation of CysLT_ER rather than a number until it is cloned (Fig 5).

The discovery of a CysLT_ER prompted us to re-evaluate the findings in WT mice and single-receptor-deficient strains. The permeability response to 0.5 nmol LTC₄ or LTD₄ was 50% reduced in *Cyslt1r^{-/-}* mice and normal in magnitude but delayed in $Cyslt2r^{-/-}$ mice, suggesting that $CysLT_1R$ is the major signaling receptor for LTC₄ and LTD₄, whereas CysLT₂R is a negative regulator of CysLT1R. LTE4-elicited vascular leak was not attenuated in the Cyslt1 $r^{-/-}$ mice but delayed and sustained in the Cy $slt2r^{-/-}$ strain, suggesting that CysLT_ER is the dominant receptor for this ligand and that CysLT₂R is again a negative regulator. That the enhanced sensitivity to LTE₄-induced ear edema observed in the Cyslt1r/Cyslt2r^{-/-} strain was not seen with either single-receptor-null strain, $Cyslt1r^{-/-}$ or $Cyslt2r^{-/-}$, implies that both CysLT₂R and CysLT₁R negatively regulate CysLT_ER. Indeed, administration of the selective CysLT₁R antagonist MK571 to $Cyslt2r^{-/-}$ mice mimicked the phenotype of the $Cyslt1r/Cyslt2r^{-/-}$ strain in terms of the markedly increased vascular leak of the ear to intradermal LTE₄. This, of course, meant that MK571 was not an inhibitor of CysLT_ER. Curiously, pretreatment with MK571 had opposing effects in WT mice and the $Cyslt1r/Cyslt2r^{-/-}$ strain.³² Specifically, MK571 suppressed swelling of the skin in WT mice challenged intradermally with 0.5 nmol of LTD₄, LTC₄, or LTE₄. In contrast, the same MK571 pretreatment and dose of ligand produced an enhanced

FIG 5. Dose dependence of LTC₄-, LTD₄-, and LTE₄-induced ear edema in WT and *Cyslt1r/Cyslt2r^{-/-}* mice. WT (**A**, **C**, and **E**) and *Cyslt1r/Cyslt2r^{-/-}* (**B**, **D**, and **F**) mice received intradermal injections of LTC₄ (Fig 5, *A* and *B*), LTD₄ (Fig 5, *C* and *D*), or LTE₄ (Fig 5, *E* and *F*) in the right ear and vehicle in the left ear (2 mice per group). Ear thickness was measured with calipers at the indicated times after the injection. *Error bars* indicate SDs. Reproduced from Maekawa et al³² with permission from the *Proceedings of the National Academy of Sciences*.

response to cysLTs in $Cyslt1r/Cyslt2r^{-/-}$ mice. Thus MK571, which is a prototype of the lukast drugs, potentiates responses apparently mediated through $CysLT_ER$, in a setting in which neither $CysLT_1R$ nor $CysLT_2R$ is present to impart negative regulation. It

is possible that MK571, which is now known to block certain transporter proteins and some purinergic (P2Y) receptors for nucleotides, 33,34 might block a yet-to-be-defined receptor with negative regulatory properties for CysLT_FR.

Receptor specificity and potency of the cys-LTs

FIG 6. Schematic presentation of the diversity of the cysLT receptor system. *5-LO*, 5-Lipoxygenase; *FLAP*, 5-LO-activating protein.

DISCOVERY THAT THE P2Y₁₂ RECEPTOR MEDIATES MAST CELL ACTIVATION AND PULMONARY INFLAMMATION BY LTE₄

As is the case for many effector cells of bone marrow origin, mast cells express both CysLT₁R and CysLT₂R.^{35,36} LTC₄ and LTD₄ both induce calcium flux, cytokine and chemokine generation, phosphorylation of extracellular signal-regulated kinase (ERK), and proliferation of human mast cells in vitro.³⁵⁻³⁷ These responses, like those of the cutaneous microvasculature, are regulated positively by CysLT₁R but negatively regulated by CysLT₂R based on experiments in which each receptor is selectively knocked down by using RNA interference in primary human mast cells.³⁸ During these studies, Jiang et al³⁸ made the unanticipated finding that LTE₄ exceeded the potency of LTC₄ and LTD₄ for increasing the numbers of human mast cells arising from cultures of cord blood-derived progenitor cells maintained in the presence of stem cell factor, IL-6, and IL-10.37 Subsequently, Paruchuri et al³⁹ demonstrated that LTE₄ not only exceeded the potency of LTC₄ and LTD₄ as a mitogen for a human mast cell line, LAD2, but far exceeded its potency for causing the production of the inflammatory chemokine macrophage inflammatory protein- 1β (MIP- 1β) and was also substantially more potent for causing the expression of inducible COX-2 and promoting delayed prostaglandin D_2 (PGD₂) generation. Curiously, the latter effects required the activation of peroxisome proliferator-activated receptor γ (PPAR- γ), a nuclear transcription factor that is activated by several dietary lipids and eicosanoids. However, the effect of LTE_4 on PPAR- γ is indirect because LTE₄ failed to activate a PPAR-y-driven reporter in bovine endothelial cells.³⁹ Indeed, the effects of LTE₄ on PGD₂ generation and MIP-1ß production were sensitive to MK571 and pertussis toxin, whereas LTE4-mediated ERK activation was insensitive to MK571, and all LTE₄ responses were completely resistant to knockdowns of CysLT₁R and CysLT₂R. It was thus clear that mast cells expressed at least 1 previously unrecognized LTE₄ receptor that was MK571 resistant (and perhaps another that was sensitive).

Based on sequence homology between CysLT₁R, CysLT₂R, and the P2Y receptor family, it seemed likely that a putative CysLT₃R might be among the orphan P2Y-like GPCRs or even a known member. Human mast cells express several such receptors,⁴⁰ including the P2Y₁₂ receptor, a G α i-linked receptor for adenosine diphosphate and the target of thienopyridine antithrombotic drugs. Because a computer modeling study had predicted that LTE₄ might be a surrogate ligand for this receptor,⁴¹ we sought to determine whether recombinant P2Y₁₂ receptors reacted to LTE₄ and mediated the LTE₄-dependent signaling events recognized in mast cells. LTE4 induced the activation of ERK in Chinese hamster ovary cells stably transfected with human P2Y₁₂ receptors exceeding the potency of LTD₄. This signaling event was sensitive to pertussis toxin but resistant to MK571 (unpublished data). Although P2Y₁₂ did not bind LTE₄ directly, knockdown of P2Y12 receptors by RNA interference blocked LTE4mediated MIP-1ß generation and PGD₂ production by LAD2 cells without significantly altering their responses to LTD₄. Because LTE₄ (but not LTD₄) was previously shown to induce bronchial eosinophilia when administered by means of inhalation to asthmatic human subjects,⁴² we sought to determine whether pulmonary inflammation amplified by LTE₄ in mice depended on P2Y₁₂ receptors. Administration of LTE₄, but not LTD₄, to the airways of sensitized BALB/c mice potentiated eosinophilia, goblet cell metaplasia, and expression of IL-13 in response to low-dose aerosolized ovalbumin. These effects were completely intact in the $Cyslt1r/Cyslt2r^{-/-}$ mice but were completely blocked by oral administration of the $P2Y_{12}$ receptor-selective antagonist clopidogrel. The effect of P2Y12 receptor blockade was similar to the effect of platelet depletion with an antibody, suggesting that LTE₄ acted as an agonist for platelet activation in the pulmonary vasculature in this model. Importantly, clopidogrel had failed to block the response of the murine skin microvasculature to LTE₄, indicating that P2Y₁₂ receptors are separate and distinct from the CysLT_ER in the skin.³²

EPILOGUE

At this early stage, clinical considerations must be circumspect and limited based on these findings for receptors in naive mice in model systems or with targeted disruption of classical receptors. Nonetheless, the history of cysLT-mediated permeability effects in guinea pigs and human subjects suggests that this important aspect of the inflammatory process is as responsive to LTE₄ as to its precursors, LTC₄ and LTD₄, which are only transiently present during an inflammatory process. The finding that the classical CysLT₁R and CysLT₂R are negative regulators of CysLT_ER function in mice was certainly unexpected but is supported by literature showing CysLT₂R to be a negative regulator of CysLT₁R for murine and human mast cell proliferation³⁸ and by the potentiation of LTE₄-mediated skin swelling of *Cyslt*2 $r^{-/-}$ mice occurring in the presence of a CysLT₁R antagonist.³² In an inflammatory process it seems possible that the generation of LTC_4/LTD_4 and occupancy of classical receptors followed by receptor internalization⁴³ could allow increased CysLT_ER function. The identification of at least 2 LTE₄-reactive GPCRs provides potential mechanistic explanations for the potency of LTE₄ as an inducer of vascular permeability and potentiator of mucosal inflammation, which were identified by previous pharmacologic profiling studies in human and guinea pig tissues.^{13-15,25,26,42} Moreover, the fact that P2Y₁₂ (and not CysLT_ER) is responsible for LTE₄-mediated activation and proliferation of mast cells, as well as amplification of allergic pulmonary inflammation, indicates that the receptors for LTE₄ evolved to serve functions that are anatomically and contextually distinct yet potentially complementary in inflammation (Fig 6).

REFERENCES

- Brocklehurst WE. The release of histamine and formation of a slow reacting substance (SRS-A) during anaphylactic shock. J Physiol 1960;151:416-35.
- Orange RP, Murphy RC, Karnovsky ML, Austen KF. The physicochemical characteristics and purification of slow reacting substance of anaphylaxis. J Immunol 1973;110:760-70.
- Murphy RC, Hammarstrom S, Samuelsson B, Leukotriene C. a slow-reacting substance from murine mastocytoma cells. Proc Natl Acad Sci U S A 1979;76:4275-9.
- Marfat A, Corey EJ. Synthesis and structure elucidation of leukotrienes. In: Pike JE, Morton DR jr., editors. Advances in prostaglandin, thromboxane, and leukotriene research. New York: Raven; 1985. p. 155-228.
- Morris HR, Taylor GW, Piper PJ, Samhoun MN, Tippins JR. Slow reacting substances (SRSs): the structure identification of SRSs from rat basophil leukemia (RBL-1) cells. Prostaglandins 1980;19:185-201.
- Lewis RA, Drazen JM, Austen KF, Clark DA, Corey EJ. Identification of the C(6)-S-conjugate of leukotriene A with cysteine as a naturally occurring slow reacting substance of anaphylaxis (SRS-A). Importance of the 11-cis-geometry for biological activity. Biochem Biophys Res Commun 1980;96:271-7.
- Yoshimoto T, Soberman RJ, Spur B, Austen KF. Properties of highly purified leukotriene C4 synthase of guinea pig lung. J Clin Invest 1988;81:866-71.
- Parker CW, Falkenheim SF, Huber MM. Sequential conversion of the glutathionyl side chain of slow reacting substance (SRS) to cysteinyl-glycine and cysteinyl-glycine and cysteine in rat basophilic leukemia cells stimulated with A-23187. Prostaglandins 1980;20:863-86.
- Lynch KR, O'Neil GP, Liu Q, Im D-S, Sawyer N, Metters KM, et al. Characterization of the human cysteinyl leukotriene CysLT1 receptor. Nature 1999;399:789-93.
- Heise CE, O'Dowd BF, Figueroa DJ, Sawyer N, Nguyen T, Im D-S, et al. Characterization of the human cysteinyl leukotriene 2 receptor. J Biol Chem 2000;275:30531-6.
- Drazen JM, Austen KF, Lewis RA, Clark DA, Goto G, Marfat A, et al. Comparative airway and vascular activities of leukotrienes C-1 and D in vivo and in vitro. Proc Natl Acad Sci U S A 1980;77:4354-8.
- Drazen JM, Lewis RA, Austen KF, Corey EJ. Pulmonary Pharmacology of the SRS-A Leukotrienes. In: Berti F, Folco G, Velo GP, editors. Leukotrienes and prostacyclin. New York: Plenum Publishing Corporation; 1983.
- Drazen JM, Venugopalan CS, Austen KF, Brion F, Corey EJ. Effects of leukotriene E on pulmonary mechanics in the guinea pig. Am Rev Respir Dis 1982;125:290-4.
- Lee TH, Austen KF, Corey EJ, Drazen JM. Leukotriene E4-induced airway hyperresponsiveness of guinea pig tracheal smooth muscle to histamine and evidence for three separate sulfidopeptide leukotriene receptors. Proc Natl Acad Sci U S A 1984;81:4922-5.
- Krilis S, Lewis RA, Corey EJ, Austen KF. Bioconversion of C-6 sulfidopeptide leukotrienes by the responding guinea pig ileum determines the time course of its contraction. J Clin Invest 1983;71:909-15.
- Lee CW, Lewis RA, Corey EJ, Barton A, Oh H, Tauber AI, et al. Oxidative inactivation of leukotriene C4 by stimulated human polymorphonuclear leukocytes. Proc Natl Acad Sci U S A 1982;79:4166-70.
- Lee CW, Lewis RA, Tauber AI, Mehrotra M, Corey EJ, Austen KF. The myeloperoxidase-dependent metabolism of leukotrienes C4, D4 and E4 to 6-trans-leukotriene B4 diastereoisomers and the subclass-specific S-diastereoisomeric sulfoxides. J Biol Chem 1983;258:15004-10.
- Sala A, Voelkel N, Maclouf J, Murphy RC. Leukotriene E4 elimination and metabolism in normal human subjects. J Biol Chem 1990;265:21771-8.
- Jedlitschky G, Huber M, Volk A, Müller M, Leier I, Müller J, et al. Peroxisomal Degradation of leukotrienes by β-oxidation from the ω-end. J Biol Chem 1991; 266:24763-72.

- Murphy RC, Gijon MA. Review article: biosynthesis and metabolism of leukotrienes. Biochem J 2007;405:379-95.
- Weiss JW, Drazen JM, Coles N, McFadden ER Jr, Weller PF, Corey EJ, et al. Bronchoconstrictor effects of leukotriene C in humans. Science 1982;216:196-8.
- 22. Weiss JW, Drazen JM, McFadden ER Jr, Weller PF, Corey EJ, Lewis RA, et al. Airway constriction in normal humans produced by inhalation of leukotriene D: potency, time course, and effect of aspirin therapy. JAMA 1983;249:2814-7.
- Davidson AB, Lee TH, Scanlon PD, Solway J, McFadden ER Jr, Ingram RH Jr, et al. Bronchoconstrictor effects of leukotriene E4 in normal and asthmatic individuals. Am Rev Respir Dis 1987;135:333-7.
- Griffin M, Weiss JW, Leitch AG, McFadden ER Jr, Corey EJ, Austen KF, et al. Effects of leukotriene D on the airways in asthma. N Engl J Med 1983;308:436-9.
- Christie PE, Schmitz-Schumann M, Spur BW, Lee TH. Airway responsiveness to leukotriene C4, leukotriene E4, and histamine in aspirin-sensitive asthmatic subjects. Eur Respir J 1993;6:1468-73.
- Soter NA, Lewis RA, Corey EJ, Austen KF. Local effects of synthetic leukotrienes (LTC4, LTD4, LTE4 and LTB4) in human skin. J Invest Dermatol 1983;80:115-9.
- Lam BK, Penrose JF, Freeman GJ, Austen KF. Expression cloning of a cDNA for human leukotriene C4 synthase, a novel integral membrane protein conjugating reduced glutathione to leukotriene A4. Proc Natl Acad Sci U S A 1994;91:7663-7.
- Lam BK, Penrose JF, Rokach J, Xu K, Baldasaro MH, Austen KF. Molecular cloning, expression, and characterization of mouse leukotriene C4 synthase. Eur J Biochem 1996;238:606-12.
- Kanaoka Y, Maekawa A, Penrose JF, Austen KF, Lam BK. Attenuated zymosaninduced peritoneal vascular permeability and IgE-dependent passive cutaneous anaphylaxis in mice lacking leukotriene C4 synthase. J Biol Chem 2001;276: 22608-13.
- Maekawa A, Austen KF, Kanaoka Y. Targeted gene disruption reveals the role of cysteinyl leukotriene 1 receptor in the enhanced vascular permeability of mice undergoing acute inflammatory responses. J Biol Chem 2002;277:20820-4.
- Beller TC, Maekawa A, Friend DS, Austen KF, Kanaoka Y. Targeted gene disruption reveals the role of the cysteinyl leukotriene 2 receptor in increased vascular permeability and in bleomycin-induced pulmonary fibrosis in mice. J Biol Chem 2004;44:46129-34.
- Maekawa A, Kanaoka Y, Xing W, Austen KF. Functional recognition of a distinct receptor preferential for leukotriene E4 in mice lacking the cysteinyl leukotriene 1 and 2 receptors. Proc Natl Acad Sci U S A 2008;105:16695-700.
- Mitra P, Oskeritzian CA, Payne SG, Beaven MA, Milstien S, Spiegel S. Role of ABCC1 in export of sphingosine-1-phosphate from mast cells. Proc Natl Acad Sci U S A 2006;103:16394-9.
- Mamedova L, Capra V, Accomazzo MR, Gao ZG, Ferrario S, Fumagalli M, et al. CysLT1 leukotriene receptor antagonists inhibit the effects of nucleotides acting at P2Y receptors. Biochem Pharmacol 2005;71:115-25.
- Mellor EA, Maekawa A, Austen KF, Boyce JA. Cysteinyl leukotriene receptor 1 is also a pyrimidinergic receptor and is expressed by human mast cells. Proc Natl Acad Sci U S A 2001;98:7964-9.
- Mellor EA, Frank N, Soler D, Jora JM, Hodge MR, Austen KF, et al. Expression of the type 2 cysteinyl leukotriene receptor by human mast cells; demonstration of function distinct from that of CysLTR1. Proc Natl Acad Sci U S A 2003;100: 11589-93.
- Jiang Y, Kanaoka Y, Feng C, Nocka K, Rau S, Boyce JA. Interleukin 4-dependent mast cell proliferation requires intracrine/autocrine cysteinyl leukotriene-dependent signaling. J Immunol 2006;177:2755-9.
- Jiang Y, Feng C, Backskai B, Boyce JA. CysLT2 receptors interact with CysLT1 receptors and down-modulate cysteinyl leukotriene-dependent mitogenic responses of mast cells. Blood 2007;100:3263-70.
- Paruchuri S, Jiang Y, Feng C, Francis SA, Plutzky J, Boyce JA. Leukotriene E4 activates peroxisome proliferator activated receptor gamma and induces prostaglandin D2 generation by human mast cells. J Biol Chem 2008;283: 16477-87.
- Feng CL, Mery AG, Beller EM, Favot CL, Boyce JA. Adenine nucleotides inhibit cytokine generation by human mast cells through a Gs-coupled receptor. J Immunol 2004;173:7539-47.
- Nonaka Y, Hiramoto T, Fujita N. Identification of endogenous surrogate ligands for human P2Y12 receptors by in silico and in vitro methods. Biochem Biophys Res Commun 2005;337:281-8.
- Gauvreau GM, Parameswaran KN, Watson RM, O'Byrne PM. Inhaled leukotriene E4, but not leukotriene D4, increased airway inflammatory cells in subjects with atopic asthma. Am J Respir Crit Care Med 2001;164:1495-500.
- Naik S, Billington CK, Pascual RM, Deshpande DA, Stefano FP, Kohout TA, et al. Regulation of cysteinyl leukotriene type 1 receptor internalization and signaling. J Biol Chem 2005;280:8722-32.